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Mathematical Meanderings: The Lambert W Function 

In algebra, it’s likely that you’ve had to change the subject of the formula, such that a variable 

appears on its own only on one side of the equation. If there’s only one variable involved, then in 

doing this process you would have ‘solved the equation’. 

 You may wonder if there are any solutions to equations like the following: 

𝑥 = sin(𝑥) 

𝑥 = ln(𝑥) 

There’s in fact no algebraic solution for these in terms of ‘elementary’ mathematical functions, i.e. 

addition, subtraction, multiplication, roots, powers, logs and the trigonometric functions sin, tan and 

cos. An equation of the form 𝑥 = 𝑓(𝑥) that can’t be solved is known as a transcendental equation. 

𝑓(𝑥) is known as a transcendental function. 

 Similarly, if there’s some expression that again can’t be expressed in terms of elementary functions, 

for example ∫ 𝑥𝑥 𝑑𝑥, then we say the expression is not in closed form. There’s a branch of 

mathematics known as Galois Theory that concerns whether expressions are in closed form or not, 

but examples of expressions that are not in closed form include infinite summations (unless the sum 

can be simplified, e.g. a convergent geometric series) and most integrals. In addition, think of 

polynomials, i.e. expressions of the form 𝑎1𝑥𝑘1 + 𝑎2𝑥𝑘2 + ⋯. We know we can find solutions for 

any quadratic equation (which may be complex numbers). There’s similarly a ‘cubic formula’ to find 

solutions for cubics, and even a ‘quartic formula’. While solutions for the last of these will have a 

hideous number of square and cube roots, the solutions are still exactly expressible; they are closed 

form. Interestingly though, Galois Theory can be used to show that there is not necessarily an exact 

way to express the roots for quintics (i.e. polynomials of order 5) or beyond. 

In the Statistics 1 A Level module, you would have looked up z-values in a table to find the 

probability for example of a randomly chosen person having a height than a certain value, when 

heights are normally distributed. The reason you require this table is because no calculator would be 

able to compute this result without approximating it using numerical methods. This is because in 

finding some area under the Normal curve, we’re finding the following integral:  

𝑃(𝑍 < 𝑧) = ∫
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The problem is that 𝑒−𝑥2
 and its variants cannot be integrated. Interestingly we can find the definite 

integral ∫ 𝑒−𝑥2
𝑑𝑥

+∞

−∞
, which remarkably turns out to be √𝜋 (which is where the √𝜋 term comes from 

in the above probability function, to ensure the total area under the curve is 1). However we can’t 

integrate the expression more generally. 

If you do Further Maths A Level, you’ll learn about Taylor/Macclaurin Expansion in FP2 that allows 

you to convert any differentiable function to a polynomial expression with an infinite number of 

terms. Since polynomials can easily be integrated, it allows us to find the integral of the original 
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expression to some required degree of accuracy. Clearly however this value would not be exact 

given the polynomial is infinitely long. 

However, this doesn’t stop mathematicians defining functions to represent closed form results. We’ll 

look at two problems: 

a) Solve 𝑥 = ln(𝑥) 

b) Find the inverse function of 𝑓(𝑥) =  𝑥𝑥  

Both of these can be solved using the Lambert W function. Imagine we had some function:  

𝑓(𝑥) = 𝑥𝑒𝑥 

Then the Lambert W function functions the inverse of this, i.e. if the input is x, then it finds some 𝑧 

such that 𝑥 = 𝑧𝑒𝑧. So for example 𝑊(2) gives back a result 𝑧 such that 2 = 𝑧𝑒𝑧. Similarly 𝑊(𝑒) = 1 

because 𝑒 = 1𝑒1. 

Thus, the formal definition of 𝑊(𝑥) is: 

𝑥 = 𝑊(𝑥)𝑒𝑊(𝑥) 

This is slightly confusing because we’ve used the function 𝑊(𝑥) within the expression rather than on 

the left side of the equation, but this is because 𝑊(𝑥) is an inverse function. This is not closed form, 

i.e. there’s no way we could compute 𝑊(2) in some nice way. However, we can get accurate results 

using numerical methods, and really powerful calculators (such as www.wolframalpha.com) will 

compute the result for you. Nice! 

Using the function, we can solve both of our problems: 

a) Solve 𝒙 = 𝐥𝐧(𝒙) 

The general strategy is to get the equation in the form 𝑎 = 𝑏𝑒𝑏, before saying that 𝑊(𝑎) = 𝑏 by 

definition of the Lambert W function. Getting your expression in this form requires a certain degree 

of ingenuity. A trick is to exploit laws of logs, notably that ln(𝑥) = − ln (
1

𝑥
). This allows us to 

reciprocate the argument of the log where convenient: 

𝑥 = 𝑙𝑛(𝑥) 
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𝑙𝑛 (
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) = 𝑊(−1) 

1

𝑥
= 𝑒𝑊(−1) 

𝑥 = 𝑒−𝑊(−1) 

    =  −𝑊(−1) 

 

                = 0.318 ± 1.337𝑖 

As an aside, note that we would have expected there to be no real solution. You may know from the 

“Core 1” A Level module, or from elsewhere, that we can solve equalities graphically: 

(By definition of the Lambert W function.) 

(I just looked up the value for 𝑊(−1)) 

(Given that 𝑥 = ln 𝑥 and thus 𝑒𝑥 = 𝑥) 

http://www.wolframalpha.com/
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The graphs never intersect or touch, so there’s no real solution. Proving there’s no real solution 

might involve showing that 𝑦 = ln (𝑥) never ‘catches up’ with 𝑦 = 𝑥. When 𝑥 is between 0 and 1, 

𝑙𝑛(𝑥) is negative while 𝑥 is positive, so we know they’ll never intersect in this region. But when  

𝑥 > 1, the gradient of 𝑦 = 𝑥 is 1, while the gradient of ln(𝑥) is 
1

𝑥
< 1 . And since ln (𝑥) is only 

defined in the real domain when 𝑥 > 0, it must therefore never catch up. 

 

b) Find the inverse of 𝒇(𝒙) =  𝒙𝒙 

The inverse of 𝑥2 for example is obvious, i.e. √𝑥, as is 2𝑥, i.e. log2(𝑥). The inverse however of 𝑥𝑥 is 

not closed form and requires use of the Lambert W function. This time, it’s somewhat easier to get 

one side of the equation in the form  𝑏𝑒𝑏: 

𝑦 = 𝑥𝑥 

ln(𝑦)  = 𝑥 𝑙𝑛(𝑥)  

ln(𝑦) = ln(𝑥) 𝑒ln(𝑥) 

ln(𝑥) =  𝑊(ln(𝑦)) 

𝑥 = 𝑒𝑊(ln(𝑦)) 

Thus 𝑓−1(𝑥) = 𝑒𝑊(ln 𝑥). 

 

Graphs of 𝒚 = 𝒙 and 

𝒚 = 𝒍𝒏(𝒙) 


